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1 Basics of Measure Theory

1.1 Motivation for measure theory

Suppose X ∼ N(0, 1) has a Normal distribution. We have a probability distribution
φ(x) = 1√

2π
e−x

2/2. We can evaluate the expectation of a function by

E[f(X)] =

∫
f(x)φ(x) dx.

If we have a Binomial random variable Y ∼ Binom(n, p), we can write the expectation as

E[f(Y )] =
n∑
y=0

f(y)q(y).

If we have Z = max(X, 0) and we want to calculate the expectation, we could do

E[f(Z)] =
1

2
f(0) +

∫ ∞
0

f(z)φ(z) dz.

In general, we could have probability distributions on other sets, such as orthogonal ma-
trices. We want a consistent notation for all of these situations. We want to be able to
write something like

∫
f(x) dP (x).

Especially in applied contexts, you may never need the full power of measure theory,
but measure theory helps us understand what it means to, for example, condition on an
event (and whether we can do so with probability 0 events).

1.2 Measures

Measure theory is a rigorous grounding for probability theory.

Definition 1.1. Let X be a set. A measure µ maps subsets A ⊆ X to non-negative
numbers: µ(A) ∈ [0,∞].

1



Example 1.1. Let X be countable (e.g. X = Z). The counting measure is #(A) =
# points in A.

Example 1.2. Let X = Rn. Lebesgue measure is the usual notion of volume: λ(A) =∫
· · ·

∫
A dx1 · · · dxn. It is not actually possible to assign a measure to every subset of Rn;

it is possible to construct such a non-measurable set using the axiom of choice.

Example 1.3. The standard Gaussian distribution is a measure. If Z ∼ N(0, 1) and
X = R, we can make a measure via P (A) = P(Z ∈ A) =

∫
A φ(x) dx.

In general, the domain of a measure µ is a collection of subsets of X : F ⊆ 2X . Such a
collection is called a σ-field and satisfies certain properties.

Example 1.4. If X is countable, such as with counting measure, then we can take F = 2X .

Example 1.5. If X = Rn, we can take F to be the Borel σ-field, which is the σ-field you
get if you want to be able to measure all the open subsets of Rn.

Definition 1.2. Given a measurable space (X,F), a measure is a map µ : F → [0,∞]
with µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for disjoint Ai.

Notice that measures can take infinite values, such as #(Z) =∞.

Definition 1.3. A probability measure is a measure µ with µ(X ) = 1.

1.3 Integration with respect to measures

We want to be able to talk about what
∫
f(x) dµ(x) means for a nice enough function f .

Define ∫
1{x∈A} dµ(x) = µ(A).

Extend this definition to other f by linearity and limits:∫ n∑
j=1

ci1{x∈Ai} dµ(x) =

n∑
j=1

ciµ(Ai).

With functions like this, we can approximate a wide class of functions:
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Example 1.6. With counting measure,∫
f d# =

∑
x∈X

f(x).

Example 1.7. With Lebesgue measure,∫
f dλ =

∫
· · ·

∫
f(x) dx1 · · · dxn.

Example 1.8. With the Gaussian distribution,∫
f dP =

∫
fφ dx.

With a discrete distribution, we cannot write it as a density with respect to Lebesgue
measure. When do we have a density?

1.4 Densities

Definition 1.4. Given (X,F) and two measures P, µ, we say P is absolutely continuous
with respect to µ (denoted P � µ) if µ(A) = 0 =⇒ P (A) = 0. We also say that µ
dominates P .

If P � µ, then (under mild conditions) we can define the density function p : X → [0.∞)
with

P (A) =

∫
A
p(x) dµ(x) =

∫
1{x∈A}p(x) dµ(x).

We can also write ∫
f(x) dP (x) =

∫
f(x)p(x) dµ(x).

The theorem which allows us to do this is the Radon-Nikodym theorem. The common nota-
tion is p(x) = dP

dµ (x), where the density is referred to as a Radon-Nikodym derivative.

Example 1.9. If P is a probability distribution and µ is Lebesgue measure, we call p(x)
a probability density function (pdf).

Example 1.10. If P is a probability distribution and µ is counting measure, we call p(x)
a probability mass function (pmf).
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1.5 Probability spaces and random variables

How would we talk about an expression like P(X1···Xn
Y ≥W

Θ̂MLE
)?

Denote Ω as the outcome space and ω ∈ Ω as an outcome variable. A ⊆ Ω is
called an event, and P(A) is the probability of A. All of these elements together are called
a probability space (Ω,F ,P).

Definition 1.5. A random variable is a function X : Ω→ X .

With this definition, we can say things like X(ω) = 5. So Ω contains all the randomness,
and if we knew ω, then we would know the value of X.

Definition 1.6. We say that X has distribution Q (X ∼ Q) if

P(X ∈ B) = P({ω : X(ω) ∈ B}) = Q(B).

The expectation is then

E[f(X,Y )] =

∫
Ω
f(X(ω), Y (ω)) dP(ω).

In practice, we will still calculate expectations as usual.
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